Technology Courses (TECH)

Courses

This course is part of the nationally certified Project Lead The Way (PLTW) curriculum. Students are introduced to the engineering design process and its application. Through hands-on projects, students apply engineering standards, use 2D and 3D CAD software to help design solutions, solve problems, and communicate solutions. (Fall)

TECH 1008. Basic Manufacturing Processes — 3 hrs.
Materials and properties, fundamentals of metal casting, plastics processing, metal forming, welding, assembly processes, powder metallurgy, and ceramic processing. Lecture and lab. (Fall and Spring)

TECH 1010. Metal Removal Processes — 3 hrs.
Theory of metal machining, cutting-tool technology, turning and related operations, drilling and related operations, milling, grinding and other abrasive processes, other machine tools, nontraditional machining and thermal cutting processes, metrology introduction to CNC machines-advantages applications of CNC machines, introduction to sustainable machining processes. (Fall and Spring)

TECH 1011. Software for Graphic Techniques — 3 hrs.
Provides lab-based experiences for learning software skills utilizing the industry standard for graphic communications. Addresses fundamentals of the Adobe Creative Suite for print and multimedia. Provides a foundation for required courses in Graphic Technology. (Fall)

TECH 1012. ePortfolio Development & Industry Exploration — 3 hrs.
Introduction to project based environments within the print and digital publishing industries. Students will learn to document achievements through ePortfolio development. Positions within the graphic communications field will be explored. (Fall)

TECH 1015. Introduction to Sustainability — 3 hrs.
Students will gain a basic understanding of sustainability, with focus on possibilities for harmonizing economic, ecological, and social goals for current and future generations. They will conduct practical exercises to enhance personal sustainability. (Fall)

TECH 1017. Computer-Aided Design and Drafting — 3 hrs.
Fundamental concepts and procedures of producing 2D drafting and 3D solid modeling applicable to design and/or drafting in such areas as architecture, communications, electronics, manufacturing, and interior planning. Lab activities using CAD software on microcomputer systems. (Variable)

TECH 1024. Technical Drawing and Design I — 3 hrs.
Fundamentals of product design process; development of engineering drawings, geometric constructions, sketching, multi-view projections, section views, threaded fasteners, use of 3D CAD techniques for design of parts/components. (Fall and Spring)

TECH 1037. Introduction to Circuits — 3 hrs.
Introduction to AC circuits, in-depth DC circuits; current and voltage laws, circuit analysis including series and parallel circuits, inductance, capacitance, introductory magnetism; power calculations and electrical measurements, circuit simulation, troubleshooting techniques. (Fall)

TECH 1039. Circuits and Systems — 3 hrs.
AC circuits including j operators, phasors, transformers, reactance, capacitance, impedance, AC resonance, frequency response, passive filters, network theorems and circuit simulation. Lecture and lab. Prerequisite(s): TECH 1037. Prerequisite(s) or corequisite(s): MATH 1140. Automation Engineering Technology majors will be waived from MATH 1140. (Spring)

TECH 1055. Graphic Communications Foundations — 3 hrs.
Concepts and processes used by the communications industry to place images on surfaces including conventional offset, laser techniques, inkjet technology, screen printing and specialized contemporary technologies are presented. Topics include imaging history, finishing techniques and the opportunity to experience actual print projects within a graphics lab. Includes both lecture and lab. (Fall and Spring)

TECH 2024. Technical Drawing and Design II — 3 hrs.
Engineering design process, geometric dimensioning and tolerancing pertaining to ANSI Y14.5M, fasteners, gears, cams, assembly modeling, coordinate measuring, and rapid prototyping. Prerequisite(s): TECH 1024. (Spring)

TECH 2036. Power Technology — 3 hrs.
Introduction to energy and mechanical power systems. Lecture and lab cover traditional and emerging electrical power technologies such as renewable energy applications. (Variable)

TECH 2038. Introduction to Electrical Power and Machinery — 3 hrs.
Single and polyphase circuits, DC machines, AC single and polyphase synchronous and induction machines, power transformers, introduction to conventional- and renewable-based power systems. Includes lecture and lab projects. Prerequisite(s): TECH 1037; TECH 1039; MATH 1150 or MATH 1420. (Fall)

TECH 2041. Introduction to Analog Electronics — 3 hrs.
Semiconductor materials, P-N junction, characteristics of electronic devices: junction diodes, photodiodes, LED, Zener diodes, and their applications, BJT and FET transistors, small-signal amplifiers, oscillators, electronic circuit simulation and troubleshooting. Prerequisite(s): TECH 1037; TECH 1039; MATH 1140. (Fall)

TECH 2042. Introduction to Digital Electronics — 3 hrs.
Number systems and codes, digital arithmetic, Boolean algebra, elementary logic gates, combinational logic circuits, sequential logic circuits, logic circuit design and industrial applications, simulation and troubleshooting. Lecture and lab. Prerequisite(s): For Non-Automation Engineering Technology majors: TECH 1037; TECH 1039; MATH 1140. Prerequisite(s) for Automation Engineering Technology majors: MATH 1140 or MATH 1150; TECH 1037; TECH 1039. (Fall)

Concepts of flexible and fixed automation systems, basic integrated automation with machine tools, automatic tool changer and pallet loading systems. CNC parts programming for milling and turning operations along with computer simulation, CNC machine tool controller simulation, and lab activities. Introduction to robots, including robotics safety, creation of robotic tool center point and work object, basic and structured programming along with simulation and lab activities. Prerequisite(s): sophomore standing. (Fall)
Technology Courses (TECH)

TECH 2070. Digital Pre-Media — 3 hrs.
Using industry standard applications and technology, this course introduces students to the essentials of preparing a file for different mediums including print, web, and electronic media. An in-depth look into electronic file development, digital prepress techniques, variable data implementation, interactive pdf creation, color management and epublishing. Prerequisite(s): TECH 1055. (Spring)

Introductory course of principles and properties of materials, including metals, composites, ceramics, glass, and polymers. Lecture and lab. Prerequisite(s): satisfactory score on ALEKS exam; completion of UNIFI Written Communication requirement; CHEM 1020 or CHEM 1110; PHYSICS 1511 or PHYSICS 1701; sophomore standing. (Spring)

TECH 2080. Statics and Strength of Materials — 3 hrs.
Evaluation of force and force resultants, and reporting of material characteristics and strength, and probable usefulness in the construction of structures. Prerequisite(s): PHYSICS 1511 or PHYSICS 1701; MATH 1150 or MATH 1420. (Fall and Spring)

TECH 2119. Computer Applications in Technology — 3 hrs.
Study of major technology-oriented programming software including spreadsheet applications, technical report writing, database management, and presentation graphics. Applications are introduced as solutions to specific technology problems through programming exercises. (Spring)

This course is part of the nationally certified Project Lead The Way (PLTW) curriculum. Students investigate principle concepts encountered in engineering and related fields. Topics include mechanisms, energy, statistics, materials, and kinematics. Students develop problem-solving skills and apply knowledge of research and design to create solutions to various challenges, document work, and communicate solutions. Prerequisite(s): PHYSICS 1400 or PHYSICS 1511 or PHYSICS 1701. (Variable)

Design and development of 3D solid models, part assemblies, generation of detailed drawings, and kinematic analysis of assembly models using a parametric solid modeling software. Concepts of design for additive manufacturing (AM) introduced at the solid modeling stage for subsequent use in group projects. Students work in collaborative group projects for developing a product (parts and assembly), preparing for AM (3D printing/prototyping the product). Lecture and lab. Prerequisite(s): TECH 1024; TECH 2024; junior standing. (Fall)

TECH 3065. Technology and Organizational Efficiency — 3 hrs.
This course meets the needs of students who have an interest in real world relationships between organizational efficiency and technological innovations. We will discuss the interrelationships among disciplines and the influence of contemporary technology on the industry, culture, and workplace environment. Prerequisite(s): junior standing. (Spring)

TECH 3102. Living in Our Techno-Social World — 3 hrs.
Exploration of the complex relationships between technology and society. Students discover how social systems affect the nature and use of technology and how the nature and use of technology affect social systems. Prerequisite(s): junior standing. (Same as CAP 3102) (Spring)

TECH 3113. Manufacturing Tooling — 3 hrs.
Principles of cutting tools, jigs, fixtures, progressive dies, and gaging; tool geometry, tool life, cost analysis, ergonomics, and safety in tooling design applications. Lecture and lab. Prerequisite(s): TECH 1008; TECH 1010; TECH 1024; MATH 1150 or MATH 1420; CHEM 1020 OR CHEM 1110; PHYSICS 1511 or PHYSICS 1701; TECH 2072; junior standing. (Spring)

TECH 3114. Product Development and Enterprise — 3 hrs.
Application of organizational management practices within a simulated product development and enterprise environment. Activities relate to development and enterprising functions such as financing, designing, producing, and marketing a product. Prerequisite(s): TECH 1008; TECH 1017 or TECH 1022 or TECH 1024; or consent of instructor; junior standing. (Variable)

Applications and analysis of technology systems. Also includes equipment operation, maintenance, and safety. Prerequisite(s): TECH 1010; TECH 1024; junior standing. Students with AAS degree will be evaluated individually by department. (Variable)

TECH 3127. Transport Phenomena for Technologists — 3 hrs.
Application of fluid flow and heat transfer concepts to material processing including conduction, convection, radiation, Bernoulli’s principles, and turbulent flow. Thermodynamic principles are reviewed and applied to heat power cycle systems. Thermal and fluid computational dynamics are covered and applied to physical simulation models. Prerequisite(s): TECH 1024; MATH 1150 or MATH 1420; CHEM 1020 or CHEM 1110; PHYSICS 1511 or PHYSICS 1701; junior standing or consent of instructor. (Spring)

TECH 3129/5129. Linear Control Systems — 3 hrs.
Learning open and closed loop control theory, applications to analogies for modeling and design procedures. Introducing sensors, actuators, PID control, analog controllers, and elementary concepts of dynamic performance and stability. Lecture and lab. Prerequisite(s): TECH 3152; PHYSICS 1511 or PHYSICS 1701; junior standing. (Fall)

TECH 3131. Technical Project Management — 3 hrs.
Project management concepts, needs identification, composition and role of project teams, project communication, related project management techniques, practical implementation, and project management software. Prerequisite(s): junior standing. (Spring)

TECH 3132/5132. Metallurgy and Phase Transformation — 3 hrs.
Advanced principles of metallurgy, properties, microstructural analysis, and heat treatment of metals and alloys used in manufacturing. Transformation kinetics are included. Lecture and lab. Prerequisite(s): CHEM 1020 or CHEM 1110; PHYSICS 1511 or PHYSICS 1701; or consent of instructor; junior standing. (Variable)

TECH 3134. Molding Practices in Metal Casting — 3 hrs.
Study of molding practices used in contemporary metal casting. Prerequisite(s): TECH 2072; CHEM 1020 or CHEM 1110; PHYSICS 1511 or PHYSICS 1701; junior standing or consent of instructor. (Odd Falls)

Applied manufacturing design process: design teams define, plan and document design project. Concept generation and evaluation, engineering and product performance specifications, costing, production process, and product support. Prerequisite(s): TECH 2024; junior standing. (Spring)
TECH 3142. Statistical Quality Control — 3 hrs.
Application of quality control tools/techniques to manufacturing and service environments using statistics, sampling techniques, probability, and control charts. Utilization of quality control concepts and strategies such as Lean and Six Sigma. Calculations and interpretations of process controls and process capabilities for continuous improvement. Prerequisite(s): MATH 1140 or MATH 1150 or MATH 1420 or STAT 1772; junior standing or consent of instructor. (Fall and Spring)

Operations management (OM) principals for production of both goods and services through the basic functions of the management process, consisting of planning, organizing and controlling in order to make strategic decisions with the goal of improving operational efficiency. Topics include: forecasting, project management, process and location strategies, plant layout, staffing and balancing, inventory control, material requirements planning and short-term scheduling. Prerequisite(s): MATH 1140 or MATH 1150 or MATH 1420 or STAT 1772; junior standing or consent of instructor. (Fall and Spring)

Development of interactive Web sites with content management tools. Emphasis on creating Website for accessibility and usability, digital content management, and site layout and maintenance. Lecture on current graphics’ industry issues and hands-on Web publishing activities. Prerequisite(s): junior standing. (Spring)

Advanced programming for CNC machines, machining parameters, machining centers, turning centers, CAM application programs to create part geometry, tool paths, machining parameters, and post process NC code. Robot programming using simulation software. Prerequisite(s): TECH 1010; TECH 1024; TECH 2060; junior standing or consent of instructor. (Odd Springs)

Principles of design for machine elements, failure analysis, static and dynamic loads. Machine elements include power transmission elements such as fasteners, gears, belts, chains, shafts, keys, couplings, clutches, brakes, springs, bearings. Prerequisite(s): MATH 1150 or MATH 1420; PHYSICS 1511 or PHYSICS 1701; TECH 2080; Junior Standing or Consent of Instructor. (Fall)

TECH 3150/5150. Graphic Communications Imaging — 3 hrs.
Explorations of conventional graphic arts imaging technologies and processes including screen printing processes, dye sublimation, and other conventional imaging technologies. Emphasis on technical information and hands-on experiences. Prerequisite(s): TECH 2070; junior standing. (Spring)

TECH 3152. Advanced Analog Electronics — 3 hrs.
Amplifier and oscillator circuits using discrete electronic devices, principle of feedback, ICs - SSI, MSI and LSI, operational amplifiers, electronic circuits using OP-AMPS, measurement and simulation techniques, regulated power supplies, industrial applications of ICs, troubleshooting techniques. Lecture and lab. Prerequisite(s): TECH 1037; TECH 1039; TECH 2041. Prerequisite(s) or corequisite(s): MATH 1150 or MATH 1420; sophomore standing. (Spring)

TECH 3156. Advanced Digital Electronics — 3 hrs.
Arithmetic circuits, sequential logic circuit analysis and synthesis, counters and registers, shift registers, memory devices, digital and analog interfaces, ADC, DAC, and Multiplexing. Lecture and lab. Prerequisite(s): TECH 1037; TECH 1039; TECH 2042 or CS 1410; sophomore standing. (Spring)

TECH 3157/5157. Microcontroller Applications — 3 hrs.
Microcontroller technology applied to real-time industrial problems; survey of industrial computer hardware, networking, and software. Lecture and lab. Prerequisite(s): TECH 3152; TECH 3156; CS 1160 or consent of instructor; junior standing. (Fall)

Computer-aided instrumentation and interfacing; real-time industrial data acquisition hardware and software; sensors, signal conditioning; design and debugging of data acquisition systems using software tools. Lecture and lab. Prerequisite(s): TECH 2042; junior standing. (Spring)

TECH 3163/5163. Advanced Digital Pre-Media — 3 hrs.
An advanced look into using industry standard applications and technology, this course course introduces students to the essentials of preparing a file for different mediums including print, web, and electronic media. An in-depth look into electronic file development, digital prepress techniques, variable data implementation, interactive pdf creation, color management and epublishing. Prerequisite(s): TECH 2070; junior standing. (Fall)

TECH 3164. Programmable Logic Controllers (PLCs) — 3 hrs.
Introduction to PLCs, Basic Modes of Operation Ladder Logic Diagrams, industrial applications, sequencers, bit-wise operations, arithmetic operations, and conditional branching. Lab activities and projects. Prerequisite(s): sophomore standing. (Spring)

Analysis, modeling, simulation, and operation of electrical utility, commercial, and industrial power systems. Voltage-drop calculations, voltage regulation, system protection, faults, and harmonics. Power quality in industrial power systems. Lecture and lab. Prerequisite(s): TECH 2038; MATH 1150 or MATH 1420; PHYSICS 1511 or PHYSICS 1701; junior standing. (Spring)

TECH 3169. Digital Imaging — 3 hrs.
Photography fundamentals for digital imaging. Emphasis on developing calibration, creating profiles for digital cameras, imaging technologies, and output devices. Lecture and hands-on capturing and manipulating digital images for cross applications and content management. Prerequisite(s): TECH 2070. (Fall)

TECH 3177. Advanced Manufacturing Processes — 3 hrs.
Engineering analysis of different shaping processes; Non-traditional machining processes, Additive manufacturing, semiconductor manufacturing, IC fabrication and packaging, microfabrication and nanofabrication technologies; Principles and concepts of green/ sustainable manufacturing concepts; Fundamentals of production lines for material handling and assembly, application of robotics for manufacturing, introduction to smart manufacturing (Industry 4.0). Prerequisite(s): PHYSICS 1511 or PHYSICS 1701; MATH 1150 or MATH 1420; TECH 1008; TECH 1010; TECH 1024; TECH 2060; junior standing. (Odd Falls)

TECH 3180. Lean and Sustainable Operations — 3 hrs.
Introduction to lean systems and concepts - basic philosophy of reducing waste in areas of production, processing, inventory, transportation, waiting time and scrap generation - to reduce cost and production time and to improve quality and sustainability in the design, production and operations of goods and services. Prerequisite(s): MATH 1150 or MATH 1420 or STAT 1772; junior standing or consent of instructor. (Spring)
Technology Courses (TECH)

TECH 3182/5182. Coordination of Techniques in Career and Technical Programs — 2 hrs.
Planning, organization, development, and teaching of cooperative or multi-occupational programs in career and technical education. Prerequisite(s): junior standing. (Variable)

Application of technical knowledge to solve industrial problems within the functional area of manufacturing engineering. Preparation for examination through the manufacturing Engineering Certification Institute. Prerequisite(s): junior standing or consent of instructor. (Variable)

Non-destructive evaluation of materials using such techniques as x-ray, gamma ray, liquid penetrant tests, magnetic particle, eddy currents, SEM, etc. Prerequisite(s): TECH 2072 or TECH 3132/5132; junior standing. (Variable)

TECH 3196. Industrial Safety — 3 hrs.
Examination of the directives mandated for General Industry (29 CFR Part 1910) of the Occupational Safety and Health Administration (OSHA). Emphasis on developing and implementing a comprehensive safety and health program. Introductory discussions on understanding environmental regulations are presented. Prerequisite(s): sophomore standing. (Fall and Spring)

TECH 4000/5000. Wind Energy Engineering — 3 hrs.
Fundamentals and history of wind power. Operation, control, applications, types of wind turbines. Stand alone, grid connectivity, transmission, economic and management issues regarding the adoption of wind as an energy source. Technical, political and economic implications. Prerequisite(s): sophomore standing. (Fall and Spring)

TECH 4093/5093. Graphic Communications Estimating and Management I — 3 hrs.
Study of traditional and modern project management workflow principles in the traditional print publishing industry and web-to-print publishing. This course also studies the development of marketing strategies for variable data printing and ancillary services. Prerequisite(s): TECH 1055; TECH 2119; junior standing. (Fall)

TECH 4103/5103. Electronic Communications — 3 hrs.
Basic communication concepts including propagation, modulation, demodulation, receivers, transmitters, antennas, transmission lines, digital coding, pulse modulation and other digital/data communication techniques. Introduction to fiber-optic and satellite communications. Lecture and lab. Prerequisite(s): TECH 3152; TECH 3156; MATH 1150 or MATH 1420; junior standing. (Fall)

Introduction to discrete-time signals and systems, digital sampling theory, discrete Fourier transform, Z transform, and FIR/IIR filter design. Projects and labs based on MATLAB and DSP development kit (TMS320C5510) will be performed. Lecture and lab. Prerequisite(s): TECH 3156 or CS 1410; CS 1160 or CS 1130; junior standing. (Spring)

This course deals with the best practices used in industry to design and manufacture successful products. Product cycle in manufacturing, product quality, part design for producibility, part design analysis, tolerance stacking, process design and development, operation selection, manufacturing process selection, tooling selection, tolerance charting, process parameter selection, cost estimation, economics
standing. Prerequisite(s) or corequisite(s): TECH 4103/5103 or CS 3470/5470. (Fall)

TECH 4167/5167. Power Electronics Applications — 3 hrs.
Theory and industrial applications of solid-state electronic devices for control and conversion of electrical power. Fundamentals of power computations. Analysis/design of power converter circuits and components: single and 3-phase rectifiers, DC-DC, AC/AC converters, and inverters. Prerequisite(s): TECH 3152; junior standing. Prerequisite(s) or corequisite(s): TECH 2038. (Spring)

TECH 4178/5178. Contemporary Instruction in Technology Education — 3 hrs.
Inquiry into recent applications in instructional strategies and content, including research, development, and management of modular technology instructional systems. Prerequisite(s): TECH 1019 or consent of instructor; junior standing. (Spring)

TECH 4184/5184. Digital Imaging II — 3 hrs.
Students will explore digital imaging formats in a lab-based, hands-on environment. Topics include color calibration and printing large format images, as well as workflow and production issues, color pre-press and digital formats appropriate to multiple media. Prerequisite(s): TECH 3169; junior standing. (Spring)

TECH 4187. Applied Industrial Supervision and Management — 3 hrs.
Application of day-to-day planning, organizing, staffing, leading, and controlling of people, goods and services. Topics include problem solving, leadership, teamwork, coaching and communication, training, safety, ethics, equal opportunity employment, stakeholder engagement, and best practices of supervision and management. Prerequisite(s): junior standing. (Fall and Spring)

TECH 4193. Graphic Communication Estimating and Management II — 3 hrs.
Exploration of workflow systems for cost and pricing associated with the graphic imaging industry and web-to-print publishing. Prerequisite(s): TECH 4093/5093; junior standing. (Spring)

TECH 4198. Independent Study.
(Variable)

TECH 4210. Manufacturing Senior Projects — 3 hrs.
Cross-disciplinary teams work to research and develop a project with industrial partners. Conception phase includes problem identification, product development and testing, cost analysis, and/or process planning. Prerequisite(s) or corequisite(s): TECH 4110/5110; senior standing or consent of instructor. To be taken in the last semester of undergraduate program. (Fall and Spring)

TECH 4220. Senior Design — 3 hrs.
Senior Design represents the practical execution of the technological skills, theory and knowledge students have gained from all sources through their college career. This course is a capstone experience, which requires both teamwork and individual skills in solving a modern industrial problem. The purpose of the senior design course is to bridge the gap between academic theory and real world practice by continuing learning. Students will be introduced to the ethical responsibilities of design and the impact of engineering solutions on society. Individual and/or team projects. Collaboration with local industry, government agencies, or research institutions is encouraged. Prerequisite(s): declared Electrical Engineering Technology (EET) major; completion of at least six EET major courses; senior standing or consent of instructor. Prerequisite(s) or corequisite(s): ENGLISH 3772/5772. (Spring)

TECH 4290/5290. Project Lead The Way: Digital Electronics — 3 hrs.
Introduction to the theory and applications of analog and digital electronics utilizing the Digital Electronics curriculum from the nationally certified Project Lead The Way (PLTW) curriculum. Especially intended for science and technology K-12 education majors to become certified PLTW teachers of this course. Prerequisite(s): PHYSICS 1511 or PHYSICS 1400 or PHYSICS 1701; junior standing. (Same as PHYSICS 4290/5290) (Variable)

TECH 6100. Engineering Cost Analysis — 3 hrs.
Principles of economic factors in engineering project evaluation, planning and implementation. Engineering decision analysis, money-time relationships, measures of investment, break-even method, cost-benefit ratio, risk management. Engineering projects analyzed/justified. Prerequisite(s): Admitted to the MS Technology Program OR Instructor Consent. (Odd Falls)

TECH 6225. Integrated Logistics and Production Operations — 3 hrs.
Study of analysis, design, and issues integrating logistics and supply operations in technological organizations. Includes sourcing and supply systems, process/product development activities, supply chain practices and quality considerations. Prerequisite(s): Admitted to the MS Technology Program OR Instructor Consent. (Variable)

TECH 6231. Thermodynamics of Material Processing — 3 hrs.
Application of thermodynamic principles and energy changes associated with processing of metals, ceramics and polymers. Concepts such as mass and energy balances, fundamental laws of thermodynamics, Gibbs’s free energy, and activity of binary liquid and solid solutions. Prerequisite(s): Admitted to the MS Technology Program/Metal Casting Emphasis OR Instructor Consent. (Odd Falls)

TECH 6235. Material Transformations and Modeling — 3 hrs.
Material transformation topics such as solidification science, micro- and macro- segregation principles, fluid flow of Newtonian and non-Newtonian liquids, and advanced solid state transformations are covered and directly correlated to material modeling techniques. Prerequisite(s): Admitted to the MS Technology Program/Metal Casting Emphasis OR Instructor Consent. (Even Falls)

TECH 6239. Foundry Management — 3 hrs.
The graduate level course integrates concepts of foundry operations management to understand how casting design, material and energy cost analysis, process operations, and scheduling is critical in determining product costs. Using a complete departmental approach in analyzing foundry operations, each area of the casting process is analyzed to determine their management functionality, operations, and their associated cost to the final casting price. The course is designed to be a project based course, starting with a casting design and developing the initial tooling associated with the design. As part of the final cost analysis, student teams have to identify all functions and operations of each departmental areas such as raw materials for the casting process, inspection equipment, and environmental/safety regulations. Prerequisite(s): Admitted to the MS Technology Program/Metal Casting Emphasis OR Instructor Consent. (Even Springs)

TECH 6242. Complex Digital System Design — 3 hrs.
Complex digital systems design at the logic gate level. Basic structure, sub programs, packages and libraries of VHDL; combinational/sequential logic design with VHDL; VHDL simulation and synthesis, FPGA implementation. Projects and labs using Xilinx Spartan-3 FPGA development kit. Prerequisite(s): Admitted to the MS Technology Program OR Instructor Consent. (Odd Springs)
Design and implementation of microcontroller-based embedded computing systems to solve real-world problems. Methodologies, hardware platforms, software design and analysis, embedded OS, real-time scheduling, mixed signal processing, hardware accelerators, low power optimization. Prerequisite(s): Admitted to the MS Technology Program OR Instructor Consent. (Even Falls)

TECH 6250. Technology of Productivity Improvement — 3 hrs.
Exploration of productivity as an operational concept; analysis of productivity in industrial settings to seek improvement through technical and managerial expertise. Prerequisite(s): Admitted to the MS Technology Program OR Instructor Consent. (Variable)

TECH 6258. Total Quality Management — 3 hrs.
Managerial, technological, behavioral, and statistical concepts applied to total quality management. Quality management philosophies, continuous improvement, productivity, and issues affecting quality that apply to manufacturing, service, and technological organizations. Prerequisite(s): Admitted to the MS Technology Program OR Instructor Consent. (Odd Falls)

TECH 6275. Advanced Lean and Sustainable Operations — 3 hrs.
Skills and techniques in Lean principles applied to manufacturing and service industries: Lean enterprises, process development, supply networks, JIT tools - SMED, Kaisen, 5S, Poka-yoke, value stream mapping, time studies, motion studies, ergonomics, sustainability, sustainable operations, and carbon footprint calculations. Prerequisite(s): Admitted to the MS Technology Program OR Instructor Consent. (Odd Falls)

TECH 6282. Technology Seminar — 1 hr.
Selected advanced topics in technology and engineering technology as needed. May be repeated for a maximum of 3 hours. (Variable)

TECH 6288. Master Internship/Project — 3 hrs.
Masters' students may choose to do an internship or a research project, but not both. An internship is a supervised practicum in an industrial organization, public service agency, or education setting. A research project is a major industrial assignment ending with a measured deliverable with a substantial written report required. Approval by department graduate advisor is required for registration. Students should not take this course during their first semester. Prerequisite(s): Admitted to the MS Technology Program OR Instructor Consent. (Variable)

Introduction to research and scholarly investigation. Critical Analysis of Research, Research Problem Purpose, Characteristics of Good Research Questions, Hypothesis Variables, The Value of a Literature Review, Purpose, Need, Validity, Reliability, Quantitative Research Methodologies, Experimental Research, Correlational Research, Causal - Comparative Research, Samples, Survey research, Qualitative Research methodologies, Historical, Ethnographic Research, Individual exploration of possible thesis topics, Research proposal, Presentation methods. (MS students should not take this during their first semester). Prerequisite(s): Admitted to the MS Technology Program OR Instructor Consent. (Spring)

TECH 6295. Advanced Management and Supervision Technology — 3 hrs.
Development of knowledge, skills, and advanced application experiences of management technologies utilized in industrial supervision and management. Prerequisite(s): Admitted to the MS Technology Program OR Instructor Consent. (Even Falls)

TECH 6299. Research (Master's Thesis).
Prerequisite(s): Admitted to the MS Technology Program OR Instructor Consent. (Fall and Spring)

TECH 6300. Advanced Technical Project Management for Engineering and Technology — 3 hrs.
Technical project management and system management ensure technical progress toward objectives, proper deployment and conversation about human and financial resources, and achievement of cost and schedule targets. The course focuses on technical, industrial systems development, scheduling technical project planning and control; structuring performance measures and metrics; technical teams and technical project management. Prerequisite(s): Admitted to the MS Technology Program OR Instructor Consent. (Odd Springs)

This course presents the foundations of operational analysis, systems engineering architecture, systems engineering, and project management, in an integrated format. Through a synchronized combination of in-class lectures, industrial guest speakers, and individual and team assignments, this course provides an overall perspective for corporate decision making using a systems approach. Prerequisite(s): consent of department. (Fall)

TECH 6420. Systems Engineering Architecture — 3 hrs.
Systems Engineering Architecture combines the structure of all engineering systems, elements and the tactical insights of operational planning to deliver a specific capability, element or product. This course takes an analytical and data-driven approach to decompose and analyze the constituent parts of a mission in order to identify measurable trade-offs and draw conclusions. Prerequisite(s): TECH 6400. (Fall)

TECH 6440. SMART Industrial Development - Systems Simulation — 3 hrs.
As systems/products/processes grow increasingly complex to meet the demands of the contemporary global market, companies are challenged to consistently deliver high-quality products under tighter and tighter budgets and schedules. This SMART Development course provides a multidisciplinary set of tools and techniques for understanding, organizing, and managing the complexity of product development throughout the product life cycle. This course brings together current industry best practices to ensure robust, cost-effective approaches that meet stringent functional, performance, and cost requirements. Prerequisite(s): TECH 6400. (Spring)

TECH 6460. Life Cycle Applications — 3 hrs.
This course provides a comprehensive overview of the applied solution design and management system acquisition life-cycle management, technical and business processes. The course also presents the program management integration process that ties them all together. The course goal is to immerse the students in applied system design management, acquaint them with the specialized terminology, familiarize them with the roles of the primary life cycle stakeholders and demonstrate how it all fits together. Prerequisite(s): TECH 6400. (Spring)

This course applies knowledge from the previous courses in the Applied Systems Engineering Management program to a live corporate issue. Prerequisite(s): TECH 6400; TECH 6420; TECH 6440; TECH 6460. (Summer)
TECH 7300. DIT Post Comprehensive Registration.
(Fall and Spring)

Studies in Microgrids in Electrical Power Systems

TECH 7388. Doctoral Internship — 3-6 hrs.
Offered in education and industry to provide practical experience in teaching, supervision, administration, or management. May be taken once in educational environment and once in industrial environment. Prerequisite(s): consent of advisor; advancement to candidacy; completion of at least 21 semester hours in required core. (Fall and Spring)

TECH 7399. Research (Doctoral Dissertation).
Prerequisites: successful completion of 40 credit hours in approved program of study, internship, and approval of dissertation proposal. (Fall and Spring)