Technology Courses (TECH)

Courses

This course is part of the nationally certified Project Lead The Way (PLTW) curriculum. Students are introduced to the engineering design process and its application. Through hands-on projects, students apply engineering standards, use 2D and 3D CAD software to help design solutions, solve problems, and communicate solutions. (Fall)

Materials and properties, fundamentals of metal casting, plastics processing, metal forming, welding, assembly processes, powder metallurgy, and ceramic processing. Lecture and lab. (Fall and Spring)

Theory of metal machining, cutting-tool technology, turning and related operations, drilling and related operations, milling, grinding and other abrasive processes, other machine tools, nontraditional machining and thermal cutting processes, metrology. (Fall and Spring)

TECH 1011. Software for Graphic Techniques — 3 hrs.
Provides lab-based experiences for learning software skills utilizing the industry standard for graphic communications. Addresses fundamentals of the Adobe Creative Suite for print and multimedia. Provides a foundation for required courses in Graphic Technology. (Fall)

TECH 1012. ePortfolio Development & Industry Exploration — 3 hrs.
Introduction to project based environments within the print and digital publishing industries. Students will learn to document achievements through ePortfolio development. Positions within the graphic communications field will be explored. (Fall)

TECH 1015. Introduction to Sustainability — 3 hrs.
Students will gain a basic understanding of sustainability, with focus on possibilities for harmonizing economic, ecological, and social goals for current and future generations. They will conduct practical exercises to enhance personal sustainability. (Fall)

Fundamental concepts and procedures of producing 2D drafting and 3D solid modeling applicable to design and/or drafting in such areas as architecture, communications, electronics, manufacturing, and interior planning. Lab activities using CAD software on microcomputer systems. (Variable)

Fundamentals of product design process; development of engineering drawings, geometric constructions, multi-view projections, section views, auxiliary view (pictorials) using 2D drafting software. Use of 3D CAD techniques for design of parts/components. (Fall and Spring)

TECH 1037 (330:037). Introduction to Circuits — 3 hrs.
Introduction to AC circuits, in-depth DC circuits; current and voltage laws, circuit analysis including series and parallel circuits, inductance, capacitance, introductory magnetism; power calculations and electrical measurements, circuit simulation, troubleshooting techniques. (Fall)

AC circuits including j operators, phasors, transformers, reactance, capacitance, impedance, AC resonance, frequency response, passive filters, network theorems and circuit simulation. Lecture and lab. Prerequisite(s): TECH 1037 (330:037). Prerequisite(s) or corequisite(s): MATH 1140 (800:046). (Spring)

Concepts and processes used by the communications industry to place images on surfaces including conventional offset, laser techniques, inkjet technology, screen printing and specialized contemporary technologies are presented. Topics include image history, finishing techniques and the opportunity to experience actual print projects within a graphics lab. Includes both lecture and lab. (Fall and Spring)

TECH 2041 (330:041). Introduction to Analog Electronics — 3 hrs.
Introduction to energy and mechanical power systems. Lecture and lab cover traditional and emerging electrical power technologies such as renewable energy applications. (Variable)

Introduction to electrical power and machinery. Single and polyphase circuits, DC machines, AC single and polyphase synchronous and induction machines, power transformers, introduction to conventional- and renewable-based power systems. Includes lecture and lab projects. Prerequisite(s): TECH 1037 (330:037); TECH 1039 (330:039); MATH 1150 (800:048) or MATH 1420 (800:060). (Fall)

TECH 2042 (330:042). Introduction to Digital Electronics — 3 hrs.
Number systems and codes, digital arithmetic, Boolean algebra, elementary logic gates, combinational logic circuits, sequential logic circuits, logic circuit design and industrial applications, simulation and troubleshooting. Lecture and lab. Prerequisite(s): TECH 1037 (330:037); TECH 1039 (330:039); MATH 1140 (800:046). (Fall)

Concepts of flexible and fixed automation systems, basic integrated automation with machine tools, automatic tool changer and pallet loading systems. CNC parts programming for milling and turning operations along with computer simulation, CNC machine tool controller simulation, and lab activities. Introduction to robots, including robotics safety, creation of robotic tool center point and
Technology Courses (TECH)

work object, basic and structured programming along with simulation and lab activities. Prerequisite(s): sophomore standing. (Fall)

TECH 2070 (330:070). Digital Pre-Media — 3 hrs.
Using industry standard applications and technology, this course introduces students to the essentials of preparing a file for different mediums including print, web, and electronic media. An in-depth look into electronic file development, digital prepress techniques, variable data implementation, interactive pdf creation, color management and e-publishing. Prerequisite(s): TECH 1055 (330:055). (Spring)

Introductory course of principles and properties of materials, including metals, composites, ceramics, glass, and polymers. Lecture and lab. Prerequisite(s): satisfactory score on ALEKS exam; completion of LAC 1A; CHEM 1020 (860:020) or CHEM 1110 (860:044); PHYSICS 1511 (880:054) or PHYSICS 1701 (880:130); sophomore standing. (Spring)

Evaluation of force and force resultants, and reporting of material characteristics and strength, and probable usefulness in the construction of structures. Prerequisite(s): PHYSICS 1511 (880:054) or PHYSICS 1701 (880:130); MATH 1150 (800:048) or MATH 1420 (800:060). (Fall and Spring)

TECH 2119. Computer Applications in Technology — 3 hrs.
Study of major technology-oriented programming software including spreadsheet applications, technical report writing, database management, and presentation graphics. Applications are introduced as solutions to specific technology problems through programming exercises. (Spring)

This course is part of the nationally certified Project Lead The Way (PLTW) curriculum. Students investigate principle concepts encountered in engineering and related fields. Topics include mechanisms, energy, statistics, materials, and kinematics. Students develop problem-solving skills and apply knowledge of research and design to create solutions to various challenges, document work, and communicate solutions. Prerequisite(s): PHYSICS 1400 or PHYSICS 1511 (880:054) or PHYSICS 1701 (880:130). (Variable)

TECH 3024/5024 (330:122g). Advanced CAD and Modeling — 3 hrs.
Design and development of 3D solid models, part assemblies, generation of detailed drawings, and kinematic analysis of assembly models using a parametric solid modeling software. Students work in group projects for developing a product (parts and assembly) and 3D printing/prototyping the product. Lecture and lab. Prerequisite(s): TECH 1024 (330:024); junior standing. (Fall)

TECH 3065. Technology and Organizational Efficiency — 3 hrs.
Review and implement technology and efficiency practices. Topics include technology and innovation management, operational functions, economics, competition, social responsibility, strategy, decision making, product innovation, marketing, quality, and distribution. Prerequisite(s): junior standing. (Spring)

Exploration of the complex relationships between technology and society. Students discover how social systems affect the nature and use of technology and how the nature and use of technology affect social systems. Prerequisite(s): junior standing. (Same as CAP 3102 (CAP:102)) (Spring)

Principles of cutting tools, jigs, fixtures, progressive dies, and gaging; tool geometry, tool life, cost analysis, ergonomics, and safety in tooling design applications. Lecture and lab. Prerequisite(s): TECH 1008 (330:008); TECH 1010 (330:010); TECH 1024 (330:024); MATH 1150 (800:048) or MATH 1420 (800:060); CHEM 1020 (860:020) OR CHEM 1110; PHYSICS 1511 (880:054) or PHYSICS 1701 (880:130); TECH 2072 (330:072); junior standing. (Spring)

Application of organizational management practices within a simulated product development and enterprise environment. Activities relate to development and enterprising functions such as financing, designing, producing, and marketing a product. Prerequisite(s): TECH 1008 (330:008); TECH 1017 (330:017) or TECH 1022 or TECH 1024 (330:024); or consent of instructor; junior standing. (Variable)

Applications and analysis of technology systems. Also includes equipment operation, maintenance, and safety. Prerequisite(s): TECH 1010 (330:010); TECH 1024 (330:024); junior standing. Students with AAS degree will be evaluated individually by department. (Variable)

Application of fluid flow and heat transfer concepts to material processing including conduction, convection, radiation, Bernoulli’s principles, and turbulent flow. Thermodynamic principles are reviewed and applied to heat power cycle systems. Thermal and fluid computational dynamics are covered and applied to physical simulation models. Prerequisite(s): TECH 1024 (330:024); MATH 1150 (800:048) or MATH 1420 (800:060); CHEM 1020 (860:020) or CHEM 1110 (860:044); PHYSICS 1511 (880:054) or PHYSICS 1701 (880:130); Junior Standing or Consent of Instructor. (Odd Springs)

TECH 3129/5129 (330:129g). Linear Control Systems — 3 hrs.
Learning open and closed loop control theory, applications to analogies for modeling and design procedures. Introducing sensors, actuators, PID control, analog controllers, and elementary concepts of dynamic performance and stability. Lecture and lab. Prerequisite(s): TECH 3152 (330:152); PHYSICS 1511 (880:054) or PHYSICS 1701 (880:130); Junior Standing. (Fall)

TECH 3131 (330:131g). Technical Project Management — 3 hrs.
Project management concepts, needs identification, composition and role of project teams, project communication, related project management techniques, practical implementation, and project management software. Prerequisite(s): junior standing. (Fall)

Advanced principles of metallurgy, properties, microstructural analysis, and heat treatment of metals and alloys used in manufacturing. Transformation kinetics are included. Lecture and lab. Prerequisite(s): CHEM 1020 (860:020) or CHEM 1110 (860:044); PHYSICS 1511 (880:054) or PHYSICS 1701 (880:130); or consent of instructor; junior standing. (Variable)
Study of molding practices used in contemporary metal casting.
Prerequisite(s): TECH 2072 (330:072); CHEM 1020 (860:020) or CHEM 1110 (860:044); PHYSICS 1511 (880:054) or PHYSICS 1701 (880:130); junior standing or consent of instructor. (Odd Falls)

Applied manufacturing design process: design teams define, plan and document design project. Concept generation and evaluation, engineering and product performance specifications, costing, production process, and product support. Prerequisite(s): TECH 2024 (330:023); junior standing. (Spring)

Application of quality control tools/techniques to manufacturing and service environments using statistics, sampling techniques, probability, and control charts. Utilization of quality control concepts and strategies such as Lean and Six Sigma. Calculations and interpretations of process controls and process capabilities for continuous improvement. Prerequisite(s): MATH 1140 (800:046) or MATH 1150 (800:048) or MATH 1420 (800:060) or STAT 1772 (800:072); junior standing or consent of instructor. (Fall and Spring)

Operations management (OM) principals for production of both goods and services through the basic functions of the management process, consisting of planning, organizing and controlling in order to make strategic decisions with the goal of improving operational efficiency. Topics include: forecasting, project management, process and location strategies, plant layout, staffing and balancing, inventory control, material requirements planning and short-term scheduling. Prerequisite(s): MATH 1140 (800:046) or MATH 1150 (800:048) or MATH 1420 (800:060) or STAT 1772 (800:072); junior standing or consent of instructor. (Fall and Spring)

Development of interactive Web sites with content management tools. Emphasis on creating Website for accessibility and usability, digital content management, and site layout and maintenance. Lecture on current graphics' industry issues and hands-on Web publishing activities. Prerequisite(s): junior standing. (Spring)

Advanced programming for CNC machines, machining parameters, machining centers, turning centers, CAM application programs to create part geometry, tool paths, machining parameters, and post process NC code. Prerequisite(s): TECH 1010 (330:010); TECH 1024 (330:024); TECH 2060 (330:060); junior standing or consent of instructor. (Odd Springs)

Principles of design for machine elements, failure analysis, static and dynamic loads. Machine elements include power transmission elements such as fasteners, gears, belts, chains, shafts, keys, couplings, clutches, brakes, springs, bearings. Prerequisite(s): MATH 1150 (800:048) or MATH 1420 (800:060); PHYSICS 1511 (880:054) or PHYSICS 1701 (880:130); TECH 2080 (330:080); Junior Standing or Consent of Instructor. (Fall)

TECH 3150/5150 (330:150g). Graphic Communications Imaging — 3 hrs.
Explorations of conventional graphic arts imaging technologies and processes including screen printing processes, dye sublimation, and other conventional imaging technologies. Emphasis on technical information and hands-on experiences. Prerequisite(s): TECH 2070 (330:070); junior standing. (Spring)

Amplifier and oscillator circuits using discrete electronic devices, principle of feedback, ICs - SSI, MSI and LSI, operational amplifiers, electronic circuits using OP-AMPS, measurement and simulation techniques, regulated power supplies, industrial applications of ICs, troubleshooting techniques. Lecture and lab. Prerequisite(s): TECH 1037 (330:037); TECH 1039 (330:039); TECH 2041 (330:041). Prerequisite(s) or corequisite(s): MATH 1150 (800:048) or MATH 1420 (800:060); sophomore standing. (Spring)

Arithmetic circuits, sequential logic circuit analysis and synthesis, counters and registers, shift registers, memory devices, digital and analog interfaces, ADC, DAC, and Multiplexing. Lecture and lab. Prerequisite(s): TECH 1037 (330:037); TECH 1039 (330:039); TECH 2042 (330:042) or CS 1410 (810:041); sophomore standing. (Spring)

Microcontroller technology applied to real-time industrial problems; survey of industrial computer hardware, networking, and software. Lecture and lab. Prerequisite(s): TECH 3152 (330:152); TECH 3156 (330:156); CS 1160 (810:036) or consent of instructor; junior standing. (Fall)

Computer-aided instrumentation and interfacing; real-time industrial data acquisition hardware and software; sensors, signal conditioning; design and debugging of data acquisition systems using software tools. Lecture and lab. Prerequisite(s): TECH 3152 (330:152); TECH 3156 (330:156); junior standing. (Spring)

An advanced look into using industry standard applications and technology, this course course introduces students to the essentials of preparing a file for different mediums including print, web, and electronic media. An in-depth look into electronic file development, digital prepress techniques, variable data implementation, interactive pdf creation, color management and epublishing. Prerequisite(s): TECH 2070 (330:070); junior standing. (Fall)

TECH 3164 (330:164g). Programmable Logic Controllers (PLCs) — 3 hrs.
Introduction to PLCs, Basic Modes of Operation Ladder Logic Diagrams, industrial applications, sequencers, bit-wise operations, arithmetic operations, and conditional branching. Lab activities and projects. Prerequisite(s): sophomore standing. (Spring)

Analysis, modeling, simulation, and operation of electrical utility, commercial, and industrial power systems. Voltage-drop calculations, voltage regulation, system protection, faults, and harmonics. Power quality in industrial power systems. Lecture and lab. Prerequisite(s): TECH 2038 (330:038); MATH 1150 (800:048) or MATH 1420 (800:060); PHYSICS 1511 (880:054) or PHYSICS 1701 (880:130); junior standing. (Spring)

Photography fundamentals for digital imaging. Emphasis on developing calibration, creating profiles for digital cameras, imaging
TECH 3177 (330:177g). Advanced Manufacturing Processes — 3 hrs.
Engineering analysis of different shaping processes; Non-traditional machining processes, rapid prototyping, semiconductor manufacturing, IC fabrication and packaging, microfabrication and nanofabrication technologies; Principles and concepts of green/sustainable manufacturing concepts; Fundamentals of production lines for material handling and assembly, application of robotics for manufacturing. Prerequisite(s): PHYSICS 1511 (880:054) or PHYSICS 1701 (880:130); MATH 1150 (800:048) or MATH 1420 (800:060); TECH 1008 (330:008); TECH 1010 (330:010); TECH 1024 (330:024); TECH 2060 (330:060); junior standing. (Odd Falls)

Introduction to lean systems and concepts - basic philosophy of reducing waste in areas of production, processing, inventory, transportation, waiting time and scrap generation - to reduce cost and production time and to improve quality and sustainability in the design, production and operations of goods and services. Prerequisite(s): TECH 3143; MATH 1150 (800:048) or MATH 1420 (800:060) or STAT 1772 (800:072); junior standing or consent of instructor. (Spring)

TECH 3182/5182 (330:182g). Coordination of Techniques in Career and Technical Programs — 2 hrs.
Planning, organization, development, and teaching of cooperative or multi-occupational programs in career and technical education. Prerequisite(s): junior standing. (Variable)

Application of technical knowledge to solve industrial problems within the functional area of manufacturing engineering. Preparation for examination through the manufacturing Engineering Certification Institute. Prerequisite(s): junior standing or consent of instructor. (Variable)

Non-destructive evaluation of materials using such techniques as x-ray, gamma ray, liquid penetrant tests, magnetic particle, eddy currents, SEM, etc. Prerequisite(s): TECH 2072 (330:072) or TECH 3132/5132 (330:132); junior standing. (Variable)

Examination of the directives mandated for General Industry (29 CFR Part 1910) of the Occupational Safety and Health Administration (OSHA). Emphasis on developing and implementing a comprehensive safety and health program. Introductory discussions on understanding environmental regulations are presented. Prerequisite(s): sophomore standing. (Fall and Spring)

TECH 4000/5000. Wind Energy Engineering — 3 hrs.
Fundamentals and history of wind power. Operation, control, applications, types of wind turbines. Stand along, grid connectivity, transmission, economic and management issues regarding the adoption of wind as an energy source. Technical, political and economic implications. Prerequisite(s): junior standing. (Variable)

TECH 4093/5093. Graphic Communications Estimating and Management 1 — 3 hrs.
Study of traditional and modern project management workflow principles in the traditional print publishing industry and web-to-print publishing. This course also studies the development of marketing strategies for variable data printing and ancillary services. Prerequisite(s): TECH 1055 (330:055); TECH 2119; junior standing. (Fall)

TECH 4103/5103 (330:103g). Electronic Communications — 3 hrs.
Basic communication concepts including propagation, modulation, demodulation, receivers, transmitters, antennas, transmission lines, digital coding, pulse modulation and other digital/data communication techniques. Introduction to fiber-optic and satellite communications. Lecture and lab. Prerequisite(s): TECH 3152 (330:152); TECH 3156 (330:156); MATH 1150 (800:048) or MATH 1420 (800:060); junior standing. (Fall)

Introduction to discrete-time signals and systems, digital sampling theory, discrete Fourier transform, Z transform, and FIR/IIR filter design. Projects and labs based on MATLAB and DSP development kit (TMS320C5510) will be performed. Lecture and lab. Prerequisite(s): TECH 3156 (330:156) or CS 1410 (810:041); CS 1160 (810:036) or CS 1130 (810:030); junior standing. (Spring)

This course deals with the best practices used in industry to design and manufacture successful products. Product cycle in manufacturing, product quality, Machining capability, Assembly capability, Part design for producibility, Design for manufacturing and assembly, Concurrent Engineering, Part design analysis, Tolerance stacking, Process design and development, Operation selection, Manufacturing process selection, Tooling selection, Tolerance charting, Process parameter selection, Cost estimation, Economics of process planning. Prerequisite(s): CHEM 1020 (860:020) or CHEM 1110 (860:044); PHYSICS 1511 (880:054) or PHYSICS 1701 (880:130); MATH 1150 (800:048) or MATH 1420 (800:060); TECH 1008 (330:008); TECH 1010 (330:010); TECH 2024 (330:023); TECH 2060 (330:060); TECH 2072 (330:072); ENGLISH 3772/5772 (undergraduates) or ENGLISH 5772 (graduates); junior standing. (Fall)

Advanced course in the principles of metal melting practices with an emphasis on microstructural evolution and thermodynamic reactions. Topics include basic melting practices for ferrous and non-ferrous metals. Processing considerations are covered in relation to developed microstructure and refractory reactions. Prerequisite(s): TECH 2072 (330:072); MATH 1150 (800:048) or MATH 1420 (800:060); CHEM 1020 (860:020) or CHEM 1110 (860:044); PHYSICS 1511 (880:054) or PHYSICS 1701 (880:130); junior standing or consent of instructor. (Even Falls)

Advanced course in the principles of foundry tooling design including selection of pattern materials, rapid prototype development techniques, gating and riser design, and basic core box production techniques. Prerequisite(s): TECH 2072 (330:072); MATH 1150 (800:048) or MATH 1420 (800:060); CHEM 1020 (860:020) or CHEM 1110 (860:044); PHYSICS 1511 (880:054) or PHYSICS 1701 (880:130); junior standing or consent of instructor. (Even Falls)

TECH 4155/5155 (330:155g). Finite Element Analysis — 3 hrs.
Fundamental concepts of the finite element method for linear stress and deformation analysis of mechanical components. Development of truss, beam, frame, plane stress, and plane strain elements. Practical modeling techniques and use of general-purpose codes for solving practical stress analysis problems. Prerequisite(s): TECH 2080 (330:080); MATH 1150 (800:048) or MATH 1420 (800:060);
Technology Courses (TECH)

PHYSICS 1511 (880:054) or PHYSICS 1701 (880:130); junior standing. (Variable)

TECH 4158/5158 (330:158g). Graphic Communications Technical Visualization — 3 hrs.
Development of technical presentations by utilizing digital graphics and technologies for new approaches to visualization; lecture and skills development for creating 2D simulations and animations, data based graphics and charts, and creation of technical presentations. Prerequisite(s): TECH 2070 (330:070); junior standing. (Fall)

TECH 4161 (330:161g). Digital Graphic Communications — 3 hrs.
Emphasis on contemporary and future issues in the graphic communications industry. Study of the creation and conversion of graphics for cross-media applications for print and the Internet. Creative problem solving and portfolio development. Prerequisite(s): TECH 2070 (330:070); junior standing. (Spring)

TECH 4162. Automation - Pneumatics and Hydraulics — 3 hrs.
Basic application of hydraulics and pneumatics towards industrial automation. It includes hydraulic pumps, cylinders, valves, motors, fluid logic control and electrical devices used in fluid control. Pneumatic circuits and applications. Prerequisite(s): MATH 1150 (800:048) or MATH 1420 (800:060); PHYSICS 1511 (880:054) or PHYSICS 1701 (880:130); TECH 2060 (330:060). (Even Falls)

TECH 4165/5165 (330:165g). Wireless Communication Networks — 3 hrs.
Topics include wireless transmission fundamentals, protocols and TCP/IP suites, cellular wireless networks, Mobile IP, wireless LAN technologies, IEEE 802.11 and IEEE 802.15 standards, and security issues in wireless networks. Lecture and lab. Prerequisite(s): junior standing. Prerequisite(s) or corequisite(s): TECH 4103/5103 (330:103g) or CS 3470/5470 (810:147g). (Fall)

Theory and industrial applications of solid-state electronic devices for control and conversion of electrical power. Fundamentals of power computations. Analysis/design of power converter circuits and components: single and 3-phase rectifiers, DC-DC, AC/AC converters, and inverters. Prerequisite(s): TECH 2036 (330:036); TECH 3152 (330:152); junior standing. (Spring)

TECH 4174 (330:174). Senior Design I — 1 hr.
Individual and/or team analytical research or design project. Collaboration with local industry, government agencies, or research institutions is encouraged. Must register for TECH 4176 (330:176) in spring semester. Prerequisite(s): declared Electrical Engineering Technology (EET) majors; completion of at least six EET major courses; senior standing; consent of instructor. Prerequisite(s) or corequisite(s): ENGLISH 3772/5772. (Fall)

Development and completion of project identified in TECH 4174 (330:174). Prerequisite(s): TECH 4174 (330:174). (Spring)

Inquiry into recent applications in instructional strategies and content, including research, development, and management of modular technology instructional systems. Prerequisite(s): TECH 1019 or consent of instructor; junior standing. (Spring)

TECH 4184/5184. Digital Imaging II — 3 hrs.
Students will explore digital imaging formats in a lab-based, hands-on environment. Topics include color calibration and printing large format images, as well as workflow and production issues, color pre-press and digital formats appropriate to multiple media. Prerequisite(s): TECH 3169 (330:169); junior standing. (Spring)

Application of day-to-day planning, organizing, staffing, leading, and controlling of people, goods and services. Topics include problem solving, leadership, teamwork, coaching and communication, training, safety, ethics, equal opportunity employment, stakeholder engagement, and best practices of supervision and management. Prerequisite(s): junior standing. (Fall and Spring)

Exploration of workflow systems for cost and pricing associated with the graphic imaging industry and web-to-print publishing. Prerequisite(s): TECH 4093/5093; junior standing. (Spring)

TECH 4198 (330:198). Independent Study. (Variable)

TECH 4210. Manufacturing Senior Projects — 3 hrs.
Cross-disciplinary teams work to research and develop a project with industrial partners. Conception phase includes problem identification, product development and testing, cost analysis, and/or process planning. Prerequisite(s) or corequisite(s): TECH 4110/5110; senior standing or consent of instructor. To be taken in the last semester of undergraduate program. (Fall and Spring)

Introduction to the theory and applications of analog and digital electronics utilizing the Digital Electronics curriculum from the nationally certified Project Lead The Way (PLTW) curriculum. Especially intended for science and technology K-12 education majors to become certified PLTW teachers of this course. Prerequisite(s): PHYSICS 1511 (880:054) or PHYSICS 1400 or PHYSICS 1701 (880:130); junior standing. (Same as PHYSICS 4290/5290) (Variable)

Principles of economic factors in engineering project evaluation, planning and implementation. Engineering decision analysis, money-time relationships, measures of investment, break-even method, cost-benefit ratio, risk management. Engineering projects analyzed/justified. Prerequisite(s): admission to Graduate Program or consent of instructor. (Even Falls)

Study of analysis, design, and issues integrating logistics and supply operations in technological organizations. Includes sourcing and supply systems, process/product development activities, supply chain practices and quality considerations. Prerequisite(s): admission to Department of Technology graduate program or consent of instructor. (Variable)

Application of thermodynamic principles and energy changes associated with processing of metals, ceramics and polymers. Concepts such as mass and energy balances, fundamental laws of thermodynamics, Gibbs’s free energy, and activity of binary liquid and solid solutions. Prerequisite(s): consent of instructor. (Odd Falls)
Material transformation topics such as solidification science, micro-
and macro-segregation principles, fluid flow of Newtonian and non-
Newtonian liquids, and advanced solid state transformations are
covered and directly correlated to material modeling techniques.
Prerequisite(s): admission to Department of Technology graduate
program and consent of instructor. (Even Falls)

TECH 6239. Foundry Management — 3 hrs.
The graduate level course integrates concepts of foundry operations
management to understand how casting design, material and energy
cost analysis, process operations, and scheduling is critical in
determining product costs. Using a complete departmental approach
in analyzing foundry operations, each area of the casting process is
analyzed to determine their management functionality, operations,
and their associated cost to the final casting price. The course is
designed to be a project based course, starting with a casting design
and developing the initial tooling associated with the design. As part
of the final cost analysis, student teams have to identify all functions
and operations of each departmental areas such as raw materials for
the casting process, inspection equipment, and environmental/safety
regulations. Prerequisite(s): consent of instructor. (Even Falls)

Complex digital systems design at the logic gate level. Basic structure,
sub programs, packages and libraries of VHDL; combinational/
sequential logic design with VHDL; VHDL simulation and synthesis,
FPGA implementation. Projects and labs using Xilinx Spartan-3
FPGA development kit. Prerequisite(s): TECH 3156 (330:156) or
admission to Department of Technology graduate program or consent
of instructor. (Even Springs)

Design and implementation of microcontroller-based embedded
computing systems to solve real-world problems. Methodologies,
hardware platforms, software design and analysis, embedded OS, real-
time scheduling, mixed signal processing, hardware accelerators, low
power optimization. Prerequisite(s): TECH 3157/5157 (330:157g) or
admission to Department of Technology graduate program or consent
of instructor. (Odd Springs)

TECH 6250 (330:250). Technology of Productivity Improvement
— 3 hrs.
Exploration of productivity as an operational concept; analysis of
productivity in industrial settings to seek improvement through
technical and managerial expertise. Prerequisite(s): admission to
Department of Technology graduate program or consent of instructor.
(Variable)

Managerial, technological, behavioral, and statistical concepts applied
to total quality management. Quality management philosophies,
continuous improvement, productivity, and issues affecting quality
that apply to manufacturing, service, and technological organizations.
Prerequisite(s): program approval and advisor endorsement, or
approval of instructor. (Odd Springs)

TECH 6275 (330:275). Advanced Lean and Sustainable
Operations — 3 hrs.
Development of skills and techniques in applying lean manufacturing
to service and industrial settings. Topics include lean enterprise,
product development, supplies network, JIT tools, Theory of
Constraint, and value stream mapping. Prerequisite(s): TECH 3180
(330:180) or consent of instructor. (Odd Falls)

TECH 6282 (330:282). Technology Seminar — 1 hr.
Selected advanced topics in technology and engineering technology as
needed. May be repeated for a maximum of 3 hours. (Variable)

TECH 6288 (330:288). Master Internship/Project — 3 hrs.
Masters' students may choose to do an internship or a research project,
but not both. An internship is a supervised practicum in an industrial
organization, public service agency, or education setting. A research
project is a major industrial assignment ending with a measured
deliverable with a substantial written report required. Approval by
department graduate advisor is required for registration. Students
should not take this course during their first semester. Prerequisite(s):
limited to master's degree candidates; program approval, advisor and
department head endorsement. (Variable)

Introduction to research and scholarly investigation. Critical Analysis
of Research, Research Problem Purpose, Characteristics of Good
Research Questions, Hypothesis Variables, The Value of a Literature
Review, Purpose, Need, Validity, Reliability, Quantitative Research
Methodologies, Experimental Research, Correlational Research,
Causal - Comparative Research, Samples, Survey research, Qualitative
Research methodologies, Historical, Ethnographic Research,
Individual exploration of possible thesis topics, Research proposal,
Presentation methods. (MS students should not take this during their
first semester. DT students should take only after completing 30 hours
of course work). (Spring)

TECH 6295 (330:295). Advanced Management and Supervision
Technology — 3 hrs.
Development of knowledge, skills, and advanced application
experiences of management technologies utilized in industrial
supervision and management. Prerequisite(s): admission to Graduate
Program. (Even Falls)

Prerequisite(s): consent of department. (Fall and Spring)

TECH 6300. Advanced Technical Project Management for
Engineering and Technology — 3 hrs.
Technical project management and system management ensure
technical progress toward objectives, proper deployment and
conversation about human and financial resources, and achievement of
cost and schedule targets. The course focuses on technical, industrial
systems development, scheduling technical project planning and
control; structuring performance measures and metrics; technical
teams and technical project management. Prerequisite(s): graduate
status or consent of instructor. (Even Springs)

TECH 7300 (330:300). DTI Post Comprehensive Registration.
(Fall and Spring)

TECH 7375 (330:375). Historical and Contemporary Issues in
Technology — 3 hrs.
Historical, contemporary and future developments and Technological
innovations of manufacturing, production, communication, and power
systems and their impact on people, society and the environment.
Prerequisite(s): admission to Doctor of Technology program or
consent of instructor. (Fall)

TECH 7376 (330:376). Contemporary and Future Developments
in Industrial Technology — 3 hrs.
A study with emphasis on production, communication, and power
systems; and their interrelationship with people, society, and the
environment. Prerequisite(s): TECH 7375 (330:375). (Variable)
Case studies on the impact of technological and innovation evolution on societal trends and changes in its culture, with emphases on discussions of the influence of such contemporary changes in disciplines such as education, industry and research. Prerequisite(s): admission to Doctor of Technology program or consent of instructor. (Spring)

Survey of the issues, values, principles, and ethics of a technological society. Emphasis on the leadership principles, behaviors, and normative ethics of the technologist to practice the ethical decision-making process within a technological or institutional organization. Prerequisite(s): admission to graduate program or consent of instructor. (Fall)

Studies in Microgrids in Electrical Power Systems

Offered in education and industry to provide practical experience in teaching, supervision, administration, or management. May be taken once in educational environment and once in industrial environment. Prerequisite(s): consent of advisor; advancement to candidacy; completion of at least 21 semester hours in required core. (Fall and Spring)

Prerequisites: successful completion of 40 credit hours in approved program of study, internship, and approval of dissertation proposal. (Fall and Spring)